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Detailed understanding of flowing granular materials is severely hampered by the 
deficiencies of present experimental methods. To help increase the information base, 
a computer simulation has been developed to describe two-dimensional unidirectional 
flows of inelastic fully rough particles. This paper presents the results of a Couette 
shear-flow simulation. The results include distributions of velocity, density and 
granular temperature (a measure of the kinetic energy contained in the random 
particle motions). The effects of density and shear rate on the granular temperature 
are explored. Shear and normal forces on the solid walls are compared with 
experimental and theoretical results. The behaviour of the particles in the simulated 
flow is examined and assessments are made of the collision angle and velocity 
distributions. The development of a distinct, ‘layered ’ microstructure is observed in 
high-density granular flows. 

1. Introduction 
The particles composing a static granular material interact at interparticle contact 

points. A granular material will behave like a solid as long as the forces on the bulk 
material are supported across the contact points. While the frictional bonds hold 
bulk-material deformation is accomplished by elastic deformation of the constituent 
particles. When the interparticle bonds are broken the particles are free to move 
relative to one another and the bulk material will deform plastically. A bond breaks 
when the force tangential to the particle at the point of contact exceeds a certain 
fraction of the normal force. Plastic deformation can occur under a large variety of 
stress loadings. For low normal stress the strength of the tangential bonds will be 
weak and the material may deform and flow like a fluid under very small shear 
loadings. 

Much recent work has been devoted to understanding the mechanical properties 
of flowing granular materials and certain limiting granular-flow regimes have been 
identified. The ‘quasistatic’ flow regime occurs at extremely low strain rates when 
particles remain in contact for long periods of time. The current state of knowledge 
has been recently reviewed by Spencer (1981) and Mroz (1980). At the other end of 
the spectrum is the ‘rapid-flow’ or ‘grain-inertia’ regime, which occurs at very high 
shear rates. In this regime the inertia associated with the relative motions of the 
particles becomes significant and the particles may be assumed to interact by 
instantaneous collisions rather than by long-term frictional sliding at particle contact 
points. The collisions induce random instantaneous particle velocities. Thus, associated 
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with the mean velocity field is a field of random particle velocities reminiscent of 
the thermal motions of particles in a gas or liquid. The energy associated with the 
random motions is often referred to as the ‘granular temperature’, or simply the 
temperature of the flow. Granular materials in the grain-inertia regime are similar 
to hard-sphere models of gases, and many recent theoretical works (Blinowski 1978; 
Kanatani 1979a,b, 1980; Ogawa & Oshima 1977; Ogawa 1978; Oshima 1978, 1980; 
Savage & Jeffrey 1981 ; Ackermann & Shen 1982; Jenkins & Savage 1983) are based 
on molecular models of non-equilibrium gas flows (see Chapman & Cowling 1970; 
Ferziger & Kaper 1972). I n  fact, the hard-sphere approximation is more appropriately 
applied to granular interactions than molecular interactions. The major differences 
are that granular flows occur a t  much higher densities than are ever likely to be 
encountered in gases, and that granules collide inelastically. The state of knowledge 
in the rapid-flow regime has recently been reviewed by Savage (1984). 

The gaps between particles will generally be filled with an interstitial fluid. I n  both 
the quasistatic and grain-inertia regimes all effects of the interstitial fluid have been 
neglected in determining the flow behaviour. This assumes that the particleparticle 
interactions dominate the particlefluid interactions. At extremely low densities 
particle-particle interactions are infrequent and the fluid-material combination acts 
like a fluid with some viscosity correction to account for the presence of the particles. 
(This has been dubbed the ‘macroviscous regime’ by Bagnold (1954).) The first 
analysis that  led to a form of the corrected viscosity was performed by Einstein 
(1906). The conditions have not been well defined under which interstitial-fluid 
effects may be neglected in determining the mechanical behaviour of the material 
and a long discussion of this problem appears in Savage (1984). 

Granular-material flows lend themselves to computer simulation. While the 
behaviour of the bulk material is not well understood, the individual particle 
interactions - surface friction and particle collisions - are easily described by simple 
analytical expressions. If interstitial-fluid effects can be neglected, there are no 
long-range forces between the particles, and all particle interactions occur at 
particleparticle contact points. Then, between contacts, a particle may be assumed 
to follow a kinematic trajectory described by a simple algebraic function of time. 
Based on the laws of particle interactions and trajectories, a computer simulation 
may be built that  mechanistically follows individual particles, within an assemblage, 
as they interact with other particles and the system’s boundaries. The simulation 
describes the instantaneous ‘state’ of the system, which is completely given by the 
instantaneous positions and velocities of the constituent particles. From that 
knowledge, any information about the system can be obtained. I n  particular, the 
‘continuum’ information - velocity, density and temperature profiles - may be 
determined by averaging over instantaneous system states. In  effect an  experiment 
is performed on the computer: a mechanical system is set up and measurements are 
made upon it. The validity of the results depends on how accurately the individual 
particle interactions are approximated. 

Computer models of granular materials have been developed by Cundall (1974), 
Davis & Deresiewicz (1977), Cundall & Strack (1979), Trollope & Berman (1980) and 
Walton (1980, 1982a,b). All but the last have been applied to small, mostly elastic, 
deformation of granular structures. (Cundall (1974) used simulations of a rockslide 
and the filling and emptying of a hopper to illustrate the versatility of his program, 
but did not pursue the investigations in any detail.) Walton’s model, developed at 
the Lawrence Livermore Laboratory, was used to  produce cine films of large- 
deformation flows of arbitrarily shaped particles. To our knowledge, none of these 
simulations has been used for the determination of basic granular-flow properties. 
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The purpose of the present work is to produce a computer simulation of rapid 
granular flows that may be used to examine the detailed behaviour of the system. 
The simulation was designed to run efficiently, allowing a large number of flow 
parameters to be varied within the means of limited computer resources. Towards 
that end, only two-dimensional flows of two-dimensional disks or cylinders were 
modelled. There is nothing in the simulation scheme that prevents the modelling of 
three-dimensional flows of three-dimensional particles, except that the greater 
number of particles required to fill a similar-sized system would greatly increase the 
computational costs. We felt that a large number of two-dimensional simulations 
would better serve the limited state of knowledge of granular systems than a few 
three-dimensional simulations. Geometrically simple unidirectional flows were simu- 
lated to facilitate both the execution of the simulation and the interpretation of the 
results. The gravity-free flow in a Couette shear cell and the gravity-driven flow down 
an inclined chute have been modelled. (The results of the chute simulation appear 
in Campbell (1982) and Campbell & Brennen (1982b, 1984).) Both are particularly 
useful systems. The simple chute flow illustrates many relatively complicated features 
while the Couette flow is relatively simple and allows detailed examination of many 
general features of granular flows. Both have been the subject of numerous experi- 
mental and theoretical studies. In particular, the Couette-flow experiments of 
Bagnold (1954), Savage (1979) and Savage & Sayed (1980, 1983) are the only sources 
of knowledge of the constitutive behaviour of granular flows. 

Three levels of understanding may be obtained from the simulation. The first is 
an observation of the phenomenological behaviour of granular flows such as the 
shapes of velocity and density profiles. Insight may also be obtained into the 
constitutive behaviour of the bulk material. In  both cases the information may be 
compared with the limited experimental and theoretical results that are now 
available. Finally the simulation is used to gain some insight into the microstructural 
(particle-level) behaviour of granular systems. It is unlikely that experimental 
techniques will be developed to the point that is possible to make measurements on 
the microscale, although that information is easily accessible to a computer 
simulation. 

A preliminary report of this work may be found in Campbell & Brennen (1982a). 
A short animated film has been prepared from a few of the simulated systems. 

2. Computer simulation 
A detailed account of the computer simulation is given in Campbell (1982) and will 

only bc briefly repeated here. 
Throughout the simulation, the particles (of mass m and radius R) are confined 

within a control volume. A schematic of the control volume is shown in figure 1 and 
several snapshots drawn from the simulation are shown in figure 2. For the Couette- 
flow simulation both the top and bottom of the control volume are closed by solid 
boundaries. (In the chute-flow simulation only the bottom is closed by a solid 
boundary; the top is left unbounded to simulate a free surface.) The solid walls are 
separated by a distance H and the upper wall is given a velocity U in the 2-direction 
relative to the bottom wall. The sides of the control volume are bounded by ‘periodic’ 
boundaries : as a particle passes through one periodic boundary it reenters the other 
with exactly the same position and relative velocity with which it left. (This type of 
boundary is called ‘periodic’ because it emulates a situation in which the entire 
control volume is periodically repeated infinitely many times upstream and down- 
stream.) This set-up greatly enhances the computational efficiency of the simulation 
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FIGURE 1 .  Schematic of the Couette-flow simulation. 

(4) 

FIGURE 2. Typical snapshots of the Couette-flow simulation: (a) v = 0.56; ( b )  0.63; ( e )  0.76. 

by limiting the number of particles to those initially placed in the control volume. 
It has the drawback that i t  is only applicable to flows with no gradients in the flow 
direction (steady unidirectional flows). The separation L between the periodic 
boundaries was chosen so that further lengthening did not significantly alter the 
results of a few typical simulations. 

Each simulation is begun with the particles arranged in a randomly perturbed 
square lattice. The initial translational velocities (u, v in the x-, y-directions of 
figure 1) and angular rotational velocity w (measured positive in the counterclockwise 
direction) were chosen to be random perturbations about the continuum-fluid 
solution ( u ( y )  = U y / H ,  D = w = 0). From the initial configuration, each particle’s 
trajectory is followed as i t  collides with the other particles and the boundaries of the 
control volume. 
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The first simulations were performed with the solid walls maintained at a fixed 
distance H apart. With this stipulation, the bulk of particles soon lost contact with 
the walls and travelled like a plug down the centre of the channel. In  the present 
configuration the walls move in order to insure contact with the particles. A normal 
stress a; is specified as an input parameter to the program. Short-time averages of 
the normal impulses applied by the particles to the wall are compared with a;, and 
the walls are moved in or out accordingly. 

The simulation is allowed to proceed until it converges to a steady state. 
Attainment of a converged state must be determined from some instantaneously 
observable parameters. For the Couette simulation a converged state occurred when 
the total system kinetic energy and the solid-wall spacing achieve nearly constant 
values. The determination of convergence is hindered because both parameters 
fluctuate slightly. Such fluctuations are to be expected in small thermodynamic 
systems (see Landau & Lifshitz 1958). Also, the Couette-flow experiments of Savage 
& Sayed (1983) showed similar fluctuations of the measured shear and normal stresses 
on the moving walls. For most of the Couette-flow calculations, convergence was 
achieved after as little as 500 collisions per particle from the initial state. (Some of the 
chute-flow calculations took as long as 5000 collisions per particle to converge.) 

Once the system has converged, continuum-flow properties are obtained by 
averaging over successive instantaneous states of the system. The vertical span of 
the control volume is divided into strips parallel to the solid walls. At each sampling, 
the properties of the particles inside each strip are averaged. If a particle only 
partially occupies a strip, the averaging is weighted by the fraction of the particle 
that resides within the strip. These instantaneous averages are themselves averaged 
over many sampling times-for periods as long as 500 collisions per particle. The 
average value of a property p determined in this way is denoted (p}. 

Each particle collision is assumed to occur instantaneously once the particle 
surfaces have come into contact. (This is essentially the hard-sphere approximation). 
The collision result is computed from the standard centre-of-mass collision solution. 
Because the particles rotate as well as translate, two conditions are required to close 
the system of equations; one for the relative particle velocities normal to the particle 
surfaces a t  contact and the other for the particle velocities tangents1 to the surface 
at the contact point. The normal-velocity condition assumes that the particles are 
nearly elastic in the sense that energy is dissipated as a result of the collision but 
the particles involved do not deform. This is realized through a coefficient of 
restitution E~ (eP < l) ,  which is the ratio of the approach to recoil velocities in the 
centre-of-mass system and is specified as an input parameter to the program. The 
tangential-velocity condition assumes that on departure, after a collision, there will 
be zero relative tangential velocity between the surfaces of the particles. This will 
be called a ‘fully rough’ surface condition, as i t  corresponds to an infinite surface- 
friction angle; it  should not be confused with the artificial rough-surface conditions 
used in kinetic-theory models of gases which do not dissipate energy. In this case, 
both the normal and tangential conditions result in energy dissipation. 

The ratio of the approach to recoil velocities in a particlewall collision is also given 
by a coefficient of restitution ew, which may be specified independently of B Two 
different tangential-velocity conditions were applied. As for particleparticle collisions, 
the type-A wall condition assumes that the wall surface is fully rough in the sense 
that after a collision there is zero relative tangential slip between the particle surface 
and the wall. The type-B wall condition is an attempt to approximate a classical no-slip 
condition by assuming that after a wall collision the particle centre assumes the same 

9‘ 
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tangential velocity as the wall with no change in its rotation rate. This is felt to be 
similar to the conditions found in the Couette-flow experiments of Bagnold (1954) 
and Savage & Sayed (1980,1983) in which the walls were roughened by particles glued 
to the wall surfaces. 

The coefficients of restitution 6, and eP are the only material properties that appear 
in the simulation. The distribution of mass within the particle may be specified by 
/3, the square of the ratio of the particle’s radius of gyration to its radius. Throughout 
the simulation, /3 = 0.5, the value appropriate for solid cylinders, is used. 

Other than the properties E,, cg and /3, the collision equations depend only on the 
particle mass m and the’particle radius R.  A timescale enters the problem only 
through the upper-wall velocity U .  The only other lengthscale of importance is the 
separation H of the solid walls. (The separation L of the periodic boundaries is 
deliberately chosen long enough so as not to be of importance.) The results of the 
Couette-flow simulation will be presented non-dimensionally by dividing the velocities 
by the upper-wall velocity U ,  lengths by R or H, densities by the particle density 
m/xR2 (the dimensionless density u = pnR2/m is known as the ‘solid fraction’) and 
stresses by mU2/R3. The only parameters that affect the results are (i) the ratio R/H 
of particle radius to wall spacing, (ii) the dimensionless normal stress uN = u;l; R/mU 
and (iii) the dimensionless material properties eP, 8, and /3. 

3. Velocity, solid-fraction and temperature profiles 
Typical velocity, density and granular-temperature profiles for the type-A (rough 

wall surface) flows are shown in figure 3 for 8, = 0.8, eP = 0.6 and various values of 
the dimensionless normal stress uN. The data are plotted as functions of the distance 
y measured from the lower stationary wall to the upper moving wall. These velocity 
profiles are characteristic of all such simulations. At either wall there is a slip of about 
20-25 % of the upper-wall velocity. The flow shears all the way across its depth, but 
shows a region of particularly large shear next to both solid walls. The solid-fraction 
profiles all have a central region of relatively constant density and regions of 
decreasing density towards each solid wall. These results are consistent with the type-A 
chute-flow simulations reported in Campbell & Brennen (1984). 

The last graph, labelled ‘temperature’, plots a measure of the kinetic energy 
contained in the random particle motions. The mean square of the fluctuation of a 
property p is denoted by < p f 2 ) ;  denoting the mean-square value of p by <p2) and 
the square of the mean value o f p  by < P ) ~ ,  < p f 2 )  may be written: 

+I2> = <P2)-<P)2.  (1) 

The total temperature T is defined as twice the energy, per unit mass, associated with 
the particle fluctuations : 

T = ( u ’ ~ )  + (d2) +/3R2(wf2). (2) 

Temperature is a byproduct of interparticle collisions. In  a static granular material, 
any temperature would be quickly dissipated by the inelastic collisions. Thus 
temperature can be maintained only when driven by gradiegts in the mean velocity 
field. It can be clearly seen in figure 3 that the temperature is low across the central 
portion of the flow and large in the high-shear-rate regions next to each solid 
boundary. The high-temperature zones also correspond to the low-density regions. 
Campbell & Brennen (1984) have shown that the density appears to obey a 
heuristically proposed equation of state based on this temperature. 
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PICURE 3. Typical velocity, did-fraction and temperature profiles for the type-A Couette-flow 
simulation, ew = 0.8, ep = 0.6. Data are shown for uN = 0.0001 and RIH = 0.025, uN = 0.001 and 
IZ/H = 0.042 and uN = 0.01 and RIH = 0.051. 
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F i G u R E  4. Typical velocity, solid fraction and temperature profiles for the type-B Couette-flow 
simulations, ew = 0.8, eP = 0.6. Data are shown for uN = 0.0001 and R/H = 0.025, uN = 0.001 and 
R/H = 0.034, uN = 0.007 and RIH = 0.048. Note that the temperature has been scaled by dividing 
by ( R I H Y .  

Typical type-B (no-slip) Couette-flow results are presented in figure 4 for three 
different normal stresses gN. The velocity profiles show no slip at either wall, and 
vary linearly, with constant shear rate, from the stationary lower wall to  the moving 
upper wall. The solid fraction is virtually uniform across the depth, and increases with 
increasing normal stress loads. For reasons to be discussed below, the temperatures 
shown here have been scaled by dividing by ( R / H ) 2 .  As would be expected, the 
temperatures are also roughly uniform across the depth. (The scatter in the 
temperature profiles at low densities is amplified by dividing by the square of an 
extremely small R / H . )  I n  general the ratio of temperature to ( R / H ) 2  can be seen to 
decrease with increasing uN and the consequent increase in v. (Note that the 
temperature in figure 4 is plotted on a linear scale, while that in figure 3 is plotted 
on a log scale.) 

Surprisingly, the low-density high-shear-rate zoncs near the walls that appear in 
the type-A simulations are absent from the type-B simulations, indicating that the 
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FIGURE 5. Comparison oftype-B simulation results for different values of R / H ,  B, = 0.8, ep = 0.6, 
all with the normal stress varied as uN = 0.567(R/H)a. Note that the temperature has been scaled 
by dividing by ( R / H ) 2 .  

behaviour of the flow, near solid boundaries, is strongly influenced by the wall 
boundary condition. Heuristically, this effect may be attributed to the large 
rotational impulse that is applied to the particle on collision with a type-A wall. On 
subsequent collisions with other particles, the rotational momentum will be 
transferred, in part, to random linear momentum, causing a rise in the local 
temperature and a decrease in the local solid fraction. Simulations with the type-B 
wall condition produce uniform shear flows, and, although it is a somewhat artificial 
boundary condition, it provides an opportunity to examine the detailed constitutive 
and microstructural behaviour of granular systems under controlled conditions. The 
rest of this paper will deal exclusively with type-B simulations. 

A series of simulations was run to test the effect of varying RIH on the flow 
properties. The value of RIH is varied by changing the number of particles in the 
control volume while keeping the width L fixed. To hold the density constant, the 
dimensionless normal stress is varied as the square of RIH according to the rule 

2 

VN=-- u' - 0.567(:) 
PpR2 u2 (3) 

(This relation implies u; cc pp R2( U / H ) 2 ,  and was chosen to be consistent with the 
results of the Couette-flow experiments of Bagnold (1954) and Savage & Sayed (1980, 
1984). These will be discussed in greater detail in $5. The value 0.567 was chosen to 
correspond to the uN = 0.001 simulation shown in figure 4.) It can be seen in figure 5 
that, as expected, the density is independent of RIH when the stress is varied in 
the prescribed manner. Note that the ratio of the temperature to the square of the 
velocity gradient has roughly the same value for all three shear rates. This indicates 
that, at  constant density and for fixed particle radius R, the temperature varies as 
( U / H ) 2 ,  the square of the global velocity gradient. This is a special case, however, 
because there are only small gradients in the local temperature. Campbell & Brennen 
(1982b, 1984) present an example where the temperature is non-zero inside a 
non-shearing plug. In that case the temperature appears to be conducted into the 
plug from the surrounding high-temperature zones. If large temperature gradients 
are present, such as those found in the type-A simulations, conduction effects would 
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have to be taken into account, and the temperature would not be directly 
proportional to the square of the local velocity gradient. 

The ratio of the shear rate to temperature may be represented by a dimensionless 
quantity S :  

(4) 

The local values of a similar quantity S' relating the velocity gradient to that 
component of temperature associated with the translational velocities u and o, 

2 R  I dU/dY I - 2 R  I W d Y  I 
( ( u ' ~ )  +(d2) +BR2(w'2))r! - S =  

play an important role in the constitutive models of Savage & Jeffrey (1981) and 
Jenkins & Savage (1983). (Rotations do not appear in their calculations because they 
assume completely smooth particles.) A plot of the average values of S as a function 
of solid fraction is shown in figure 6. The set of data is derived from type-B simulations 
with two particle coefficients of restitution. The corresponding values of S' are 
included to compare with the predicted values of Jenkins & Savage (1983). Jenkins 
& Savage predict that S' will be independent of the density and depend only on the 
coefficient of restitution. The simulation results show that both S and S' are increasing 
functions of density. 

Figure 7 shows the partition of temperature into its components ( u ' ~ ) ,  ( d 2 )  and 
BR2<wJ2) as a function of solid fraction v. This set of data is derived from simulations 
with E ,  = ep = 0.8, although similar behaviour is seen for other coefficients of 
restitution. The plotted values have been scaled by dividing by the squared shear 
rate. The scaled values of all three components decrease with solid fraction. In  almost 
all cases, <uf2)/( UR/H)2  has the greatest and P ( W ' ~ ) / (  U /H)2  has the smallest value. 

Figure 8 shows the distribution of the angular rotation rate ( w )  across the flow 
depth. The measured values are taken from the same simulations as figure 4, and have 
been scaled by dividing by U / H .  The values of ( w )  are scattered about a mean value 
of roughly -U/2H. Recent calculations by one of the authors (Campbell 1984) 
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and /3R2(w’2)/(U/H)2 as functions of v for type-B Couette-flow simulations, ew = ep = 0.8. 
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FIGURE 9. Translational-velocity distributions for type-B Couette-flow simulations. 

indicate that the rotation is related to asymmetry in the stress tensor. The asymmetry 
disappears only if the rotation assumes a value on the order of -+ the local velocity 
gradient. 

4. Velocity distribution functions 
In drawing on the kinetic theory of non-equilibrium gases, the theoretical studies 

of Savage & Jeffrey (1981) and Jenkins & Savage (1983) assumed that the instantaneous 
particle velocities obeyed a Maxwell-Boltzmann velocity distribution about their 
mean values. (The gas temperature that normally appears in the Maxwell-Boltzmann 
expression was replaced with a measure of the random motions of the particles similar 
to that defined in (2).) This is quite a large assumption, because the derivation of 
the Maxwellian distribution assumed that the molecules interacted elastically under 
equilibrium conditions (i.e. no velocity, density or temperature gradients), far from 
the conditions present in granular flows. 

The simulation’s distributions of translational velocities u and w are shown in 
figure 9. The abscissa variable X is a measure of the deviation in the instantaneous 
velocity from its mean value, scaled by the component of the local temperature 
associated with the translational velocity components : 

The distribution is calculated by counting the number of particles possessing an 
instantaneous value of X that falls within a given range a t  each sampling time. After 
the sampling period the sums are normalized by dividing the total number of particles 
counted in each range by the total number of particles counted and the range width. 
The lines in figure 9 are drawn through the normalized sums. 

In the type-B simulations, from which these curves are derived, the temperature 
and density is constant throughout the flow. The shape of the curve appears to depend 
only on the parameter S defined above. For small values of S’ the measured 
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distributions are indistinguishable from Maxwellians. (This is a two-dimensional 
Maxwellian, and has a slightly different shape from its familiar three-dimensional 
counterpart.) As S’ increases, the distributions deviate, but still seem to retain the 
basic Maxwellian shape. From these and other distributions evaluated during the 
course of these investigations, i t  appears that  the deviation depends only on S‘, and 
is independent of u and ep. This is only true for type-B Couette flows. Distributions 
measured from type-A Couette flows and chute flows, which show temperature 
gradients and conduction effects, show much stronger deviations. 

Other distributions for the individual velocity components and the ‘total ’ distri- 
bution, which collectively describes rotational as well as translational velocities, were 
also measured and can be found in Campbell (1982). All the distributions show close 
to Maxwellian behaviour and deviate only with S and S’. 

5. Comparison with existing constitutive models 

analysis requires that the stress tensor in a simple shear flow be given by 
I n  the absence of intcrstitial fluid, electrostatic or other effects. dimensional 

where pp is the particle density and f i i  is some dimensionless tensor-valued function 
of v and ep. This relation is supported by the Couette-flow experiments of Savage & 
Sayed (1980,1983) and Bagnold (1954). (Bagnold’s data have questionable relevance 
because of the unknown effects of the glycerol-water-alcohol mixture in which his 
particles were neutrally suspended.) Bagnold supported this model with a revealing 
heuristic argument. Almost all more exact calculations (c.g. McTigue 1978 ; Ackermann 
& Shen 1982; Jenkins & Savage 1983) lead to the same conclusion. Figure 5 
demonstrates that  such a relationship applies to the type-B Couette-flow simulations. 

It seems questionable to try and adapt this model to other than simple shear flows 
(as did Savage 1979). In  Bagnold’s (1954) heuristic argument, one du/dy factor 
governs the interparticle collision rate, which controls the rate of momentum 
transport by collision. In  a gas, the transport rate is governed by the gas temperature. 
Figure 5 shows that, for type-B Couette flows, T oc ( R U / H ) 2 ,  or fi oc I du/dy 1, from 
which i t  can be inferred that the temperature also governs the transport rate in 
granular flows. (As the viscosity of a Newtonian fluid is roughly proportional to  the 
squarc root of its temperature, the expression above may be viewed as a self-excited 
Newtonian fluid with viscosity p = pp R2fi3 1 du/dy I.) However, there is no simple 
proportionality between the shear rate and temperature if there are gradients in the 
granular temperature (and the accompanying conduction effects) that were observed 
in non-simple shear flows such as chute flows and the type-A Couette flows. In  such 
cases the constitutive behaviour should reflect the local granular temperature, which 
must be determined from a coupled granular energy equation that accounts for 
temperature conduction effects. (Jenkins & Savage (1983) present a granular energy 
equation, but do not apply it to situations with large temperature gradients.) 

In  a Couette-flow rheometer it is possible to  measure the shear and normal stresses 
u& and on the solid walls, and from them to compute the corresponding values 
off,, and fvy. These may be compared with similar measurement made on the type-B 
simulations. (The simulation wall stresses are defined as the time average of the 
impulses applied by particle-wall collisions.) Figures 10 and 11 show the values for 
f,, and fvv taken from simulations with e, = 0.8 and ep = 0.6. They are compared 
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FIGURE 10. The sheer-stress function fzu( u )  for the type-B simulation, 
ew = 0.8, compared with measured and predicted values. 

with the experiments of Bagnold (1954) and Savage & Sayed (1980) (both sets of data 
were taken from Savage & Jeffrey 1981). The simulation results agree well with the 
measurements of Savage & Sayed (1980), but generally lie above Bagnold’s results. 
(Some discrepancy would be expected owing to the low coefficient of restitution of 
Bagnold’s wax spheres and the unknown effect of the viscous interstitial fluid.) 

Also plotted are the corresponding curves predicted by Jenkins & Savage (1983). 
(Values off,, andf,, are also predicted by Ogawa & Oshima (1977), Ogawa (1978), 
Oshima (1978, 1980) and Kanatani (1979a,b, 1980), but Savage (1984) shows that 
these are not in good agreement with the experimental results.) The values from the 
simulation agree with the predictions of Jenkins & Savage only at large values of the 
solid fraction. At lower solidfractions, the predictionsfallwell below the measurements. 
In  their derivation Jenkins & Savage (1983) only consider momentum transfer by 
interparticle collisions. At large solid fractions this will indeed be the dominate 
transfer mechanism. However, at low solid fractions the ‘kinetic’ or ‘streaming’ 
mechanism of momentum transfer, akin to Reynolds stresses in turbulent fluid flow, 
becomes important, and, when added to the collisional contribution, could account 
for the observed discrepancy. (Furthermore, viscous interstitial fluid, used as a 
suspending medium in Bagnold’s (1954) experiment, would damp the granular 
temperature and favour the collisional mode of momentum transfer. This is a partial 
explanation for the smaller values of f,, and fuy that Bagnold measured for low 
values of the solid fraction.) 
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FIQURE 11.  The normal-stress function f,,(v) for the type-B simulation, 
E ,  = 0.8, compared with measured and predicted values. 

It is difficult to compare the results of the two-dimensional simulation with the 
existing experimental and theoretical studies for spherical or near-spherical particles. 
To make the comparison shown in figures 10-12, we arbitrarily choose an equivalent 
three-dimensional solid fraction so that the average three-dimensional interparticle 
spacing C = (4n/3v3& R equals the average two-dimensional spacing C = (x /v ) i  R. 
The equivalence is given by 

In figures 10-12 the two-dimensional value v is plotted on the lower abscissa, and 
the equivalent three-dimensional value vBD on the upper abscissa. Considering all the 
difficulties inherent in making a comparison, the simulation data agrees remarkably 
well with the experimental measurements. 

Figure 12 is a plot of the friction coefficient uzy/uyy as a function of the solid 
fraction v. Also plotted are experimental measurements on polystyrene beads from 
Savage & Sayed (1981 personal communication) and the values predicted by Jenkins 
& Savage (1983). Jenkins & Savage predict that the friction coefficient will depend 
only on the coefficient of restitution and will be independent of the solid fraction. 
Both the simulation and the experimental results show that the friction coefficient 
is a decreasing function of v. (There is remarkably good agreement between the 
experiments and the eP = 0.6 simulation.) This is a surprising result. A standard 
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soil-mechanics test is to measure the yield strength of soils by shearing a static sample 
in a device similar to a Couette shear cell. The measurements always show that the 
yield strength increases with the packing of the sample. Apparently, the behaviour 
shown in figure 12 is a characteristic of fully developed granular flows. The effect can 
be attributed to variations in the collision-angle distribution, as will be described 
in $6. 

6. The collision-angle distribution and the development of microstructure 
in flowing granular materials 

As shown in figure 13 (a), the collision angle 8 is the inclination of a line connecting 
the centres of two colliding particles to the direction of mean flow. The collision angle 
will affect both the direction and magnitude of the impulse exerted during a collision. 
The ‘continuum ’ stress tensor, exhibited by the bulk material, represents averages 
of collision impulses. Preferred values of 8 could strongly affect the magnitude and 
relative magnitude of the stress-tensor components. The probability that a collision 
will occur at  an angle is given by the collision-angle distribution P(B), such that 
P(B)d0 is the probability of a collision occurring in a neighbourhood of size dt9 
about 8. (P(8) may also be interpreted as a properly normalized angular distribution 
of collision frequency.) In a low-density uniform gas all collisions would be equally 
likely, or P(8)  = l/a = const. Imposing a shear flow will induce an anisotropy into 
the distribution. Collisions are more likely to occur between particles whose relative 
velocities are augmented by gradients in the mean-velocity field ; in a simple shear 
flow, as shown in figure 13 (b), a particle is most likely to collide with the slower-moving 
particles in front of and below or be hit by the faster-moving particles from above 
and behind. This indicates a preference for collisions in the shaded regions of 
figure 13(b), which correspond to preferred collision angles in the range 0 < 8 < $. 
Savage & Jeffrey (1981) predict a collision pair-distribution function g ( 0 )  (which may 

FrarrnE 12. The friction coefficient uzzv/uzvu as a function of v for the type-B simulations, E, = 0.8. 
Also shown are the measurements of Savage & Sayed ( 1  981 ) and the predictions of Jenkins & Savage 
(1983). 
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(b) 

FIGURE 13. ( a )  Definition of the collision angle 0. ( b )  Collision 
anisotropy induced by bulk shear motion. 

be roughly interpreted as the probability that if two particles are in contact they will 
lie a t  an angle 8). After conversion to  two dimensions and normalizing, they predict 

(9) 
1 

g ( 0 )  = erfc (z-~S’ cos 8 sine), 

where x’ is as defined in (5) and erfc is the complementary error function. This 
corresponds to  a normalized collision-frequency distribution of the form 

P(8) = A erfc (2-% sin 0 cos 0) [exp ( -&S”2 sin2 8 cos2 8) 

-#sin8 case erfc(2-Wsin8 cos8)1, (10) 

where A is a normalizing constant and is a function of S’. The values of P(8),  predicted 
by (lo),  may be compared with collision-angle distributions measured directly from 
the simulation. The distributions are measured in much the same way as the velocity 
distribution, namely by counting the number of collisions that occur within small 
ranges of 8. Figure 14 shows two collision-angle distributions that were measured in 
low-density simulations. The corresponding curves are predicted by ( 10). Also plotted 
are measured values of the collision pair-correlation function and the corresponding 
theoretical curve of Savage & Jeffrey (1981) that  is given in (9). Except for an angular 
shift, the theoretical and measured curves show good agreement. 

Figure 15 shows the collision-angle distribution P(8) as a function of the density. 
The distribution only has the form predicted by (lo), a t  low densities. As the density 
increases, a peak appears in the distribution about 8 = 0. The peak grows steadily 
with density until, a t  u = 0.76, the distribution consists only of a sharp peak about 
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FIGURE 15. Collision-angle distributions for various solid fractions v 
from type-B Couette-flow simulations, cw = 0.8, ep = 0.6. 

8 = 0 and a shorter, wider peak near 8 = kin .  The growth of the peaks accounts for 
the reduction in friction angle with density that was observed in figure 12. Collisions 
near 8 = k i n  are glancing blows, and the impulse applied by such a collision will have 
only a small component in the direction of flow. Averaging these impulses will result 
in reduced shear stresses and a consequent reduction in the friction coefficient. The 
peaks at both 8 = 0 and 8 = k i n  are reflections of a distinct microstructure 
developing within the flowing granular material. At high solid fractions the particles 
have restricted freedom of motion. A high-density shear flow may only be maintained 
if the particles align themselves into layers parallel to the flow direction. The layer 
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structure can be clearly seen in the snapshot in figure 2(c). The peak in P(0)  near 
8 = 0 represents collisions between particles in the same layer, and the peak about 
8 = &in represents collisions between neighbouring layers. 

There are many possible internal structures for static granular assemblies. The 
layer formation and the corresponding anisotopy in the collision-angle distribution 
are properties of only fully developed granular flows and bear no relation to the 
mechanisms that determine the yield strength of a static material. Therefore it is not 
strange that the yield friction coefficient of a static sample increases with density 
while the flowing friction coefficient decreases. 

The development of the layered structure can be observed in the simulation. The 
microstructure may be described by a ‘ pair-correlation function ’ denoted by 
P(z ,  y I xo, yo) such that P(x, y I xo, yo) dx dy is the probability of finding a particle 
centre in a neighbourhood dxdy about (5, y) given that there is a particle centre 
already at (xo, yo). P(x,  y I xo, yo) represents the effect of a particle’s position on the 
positions of its neighbours. (Naturally, for non-deformable solid particles of radius 
R, P(z,ylzo,yo) = 0 if (x-xo)2+(y-yo)2 < 4R2.) 

These distributions are evaluated from the simulation by choosing a test particle 
(whose centre position determines (xo, yo)) and measuring the relative positions of the 
other particles. To reduce the effects of the solid walls, test particles are chosen to 
be every particle whose centre lies within a particle diameter of the midpoint between 
the solid walls - that is, i H -  2R < yo < i H  + 2R. Because the periodic boundary 
condition imposes that there be no changes in the flow direction, and the density, 
temperature and velocity gradient are constant across the depth, P(z,  y I zo, yo) 
should be symmetric in both x and y. 

In a shearing flow, particles in locations with different mean velocities (different 
y-coordinates) can have no correlations in the direction of flow (x-direction) : the mean 
relative velocities will vary their relative x-positions continuously. The global pair 
correlation P(z, y I xo, yo) may then be represented by two different probability 
distributions P( I y - yo/) and P( I x - zo I). P( I y - yo I) is the probability of finding a 
particle centre in the control volume at  a vertical separation I y- yo I from the test 
particle. P(Ix-x,I) is the probability of finding a particle centre with horizontal 
separation I z - x o )  from the test particle provided that the particle’s vertical 
coordinate lies within a particle diameter of the test particle’s, i.e. I y - yo I < 2R. (This 
is an approximation to the vertical range of influence of the test particle.) P(I y -yo I) 
will show the development of the layers across the depth, and P(I x - x o  I) will show 
the development of structure within the layer. 

Figures 16 and 17 show the measured values of P(I y-yo I) and P(I x - x o  I). On the 
right-hand side of each plot is shown the number of particles per unit area, n = v/nR2, 
which would be the expected values if the flow were undisturbed by the presence of 
the test particle. 

At the lowest densities the only striking feature of the distributions is a small peak 
at a separation of 2R. Beyond 2R the probability falls to the expected value. The 
primary influence of the test particle on its neighbours is to exclude their centres from 
lying within a particle diameter of the test particle’s. Particles approach, collide with, 
and recoil from, the test particle. In doing so, they pass through roughly the same 
region twice and are double-counted by the distribution assessment, forming the peak 
a t  a separation of 2R. As the density and the test particle’s range of influence increases 
further, a second peak begins to form a t  a separation of 4R. More peaks form with 
increasing density until, at the highest density, u = 0.76, the distribution is composed 
of very sharp peaks indicating well-developed layers. (The v = 0 .76  distribution was 
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FIQURE 17. Parallel pair-correlation P(I 2-zo I), showing the development of structure within a layer 
with increasing solid fraction, from the type-B simulatons, E, = 0.8, eP = 0.6. 

measured from the same simulation that produced the snapshot, shown in figure 2 (c), 
in which the layered structure may be clearly seen.) One would expect that the 
development of layers would be slower in three-dimensional flows in which the 
particles are free to move normal to the shear plane. 

7. Conclusions 
A computer simulation has been developed that describes large deformations of 

granular assemblies. Once the mechanical system has been set up, ‘experiments’ are 
performed by averaging the system properties at successive sampling intervals. The 
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present form of the simulation describes two-dimensional unidirectional flows of 
inelastic fully rough disks. The simulation has been applied to  gravity-driven inclined 
chute flows (the results of which are presented in Campbell & Brennen 1984) and the 
gravity-free flow in a Couette shear cell. Both models show good agreement with 
independent experimental measurements. 

This paper reports the results of the Couette-flow calculations. Simulations were 
performed with two wall boundary conditions. The type-A or fully rough-surface 
condition assumes that after a collision there is zero relative velocity between the 
particle and wall surfaces. The generated velocity profiles show slip at both solid walls, 
and regions with large shear in the wall neighbourhood. Corresponding to the high- 
shear zones are regions of low density and large granular temperature. 

After a collision with a type-B wall the particle’s centre of mass assumes the wall’s 
velocity. The generated velocity profiles vary linearly from zero at the stationary wall 
to the upper-wall velocity, and the density and temperature are nearly uniform across 
the depth. The angular rotation rate is also uniform across the depth and assumes 
a value of roughly half the mean shear rate. It is shown that, at constant density 
and in the absence of conduction effects, the temperature is proportional to the square 
of the shear rate. The ratio of shear rate to temperature represented by 

du 

a=- 
@ 

is shown to be an increasing function of solid fraction v. The temperature is shown 
not to be equally partitioned between the three velocity components; the largest value 
is assumed by the temperature component in the direction of mean flow. Also the 
instantaneous particle velocities appear to obey very nearly a Maxwell-Boltzmann 
velocity distribution about their mean values. 

The simulated wall stresses agree well with the results of the Couette-flow 
experiments of Bagnold (1954) and Savage & Sayed (1983) as well as the predicted 
profiles of Jenkins & Savage (1983). Furthermore, the wall-friction coefficient (the 
ratio of shear to  normal wall stresses) was found to  be a decreasing function of density. 
The same phenomenon is observed in the Couette-flow experiments of Savage & Sayed 
(1981, 1983) and run counter to  the results of shearing static samples of material 
commonly performed for soil-strength testing. Observations from the simulation 
indicate that this effect is due to anisotropies in the collision-angle distribution which 
result from the development of a distinct microstructure within the material. A 
high-density shearing flow is only possible if the constituent particles are aligned 
into layers parallel to  the direction of motion. The development of this layered 
microstructure within the simulated system has been explicitly shown. 
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